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CS History: IBM System/360 Model 85

• First computer to have cached 
memory

• Shipped in December of 1969

• Had either 16 KB or 32 KB 
cache

– Modern systems have around 64 
MB

• IBM only built about 30 of 
them

Unidentified US government agent, Public 
domain, via Wikimedia Commons



CACHE SIMULATOR PROJECT



Cache Simulator

• Take in a datatrace of load/stores from a real program

• Simulate running the program on a given cache

• Calculate how well a given cache would perform for that trace



Cache Parameters

• Always:  Write-allocate, write-back, LRU replacement

• Change:

– Cache size

– Block size

– Associativity

– Miss penalty



Address Trace

# Load/Store Address InstructionCount

# 0 7fffed80 1

# 0 10010000 10

# 0 10010060 3

# 1 10010030 4

# 0 10010004 6

# 0 10010064 3

# 1 10010034 4

L/S: 0 for load, 1 for store



Simulation Results

Simulation results:

execution time               52268708 cycles

instructions 5136716

memory accesses 1957764

overall miss rate                0.79

load miss rate                   0.88

CPI                             10.18

average memory access time      24.07 cycles

dirty evictions 225876

load_misses 1525974

store_misses 30034

load_hits 205909

store_hits 195847



What do you need to do?

• Create data structures that emulate a cache

• For each load/store instruction, find where the data would go in 
the cache, check if it’s already there

• Update cache metadata when cache blocks get evicted

• Calculate number of miss penalty cycles, load misses, store misses, 
instructions, etc.



Implementation hints

• Create a data structure that contains all of the metadata you 
need to keep for one cache entry (valid bit, dirty bit, tag) to 
keep this data in one place; don’t keep a vector of valid bits, a 
vector of dirty bits, and a vector of tags for example

• Create a data structure that keeps track of a set of cache 
entries and the LRU metadata for the set

• Keep track of counts of events (instructions, misses, hits, dirty 
evictions, etc.) not statistics; e.g., don’t have a CPI field

• Compute the statistics from the counts



Questions on Cache Final Project?



We have an 8 byte block size, direct-
mapped, 16 kB cache.  For a given byte 

address, to find the offset

A. Mod by 8

B. Mod by 16

C. Divide by 8

D. Divide by 16

E. None of the above



If we are simulating a cache and not actually 
accessing data, do we need to use the offset for 

anything?
A. Yes

B. No



We have an 8 byte block size, direct-mapped, 16 kB 
cache.  How many rows will this cache have?

A. 16

B. 2*1024

C. 8*1024

D. 16*1024

*Recall a kB is 1024 bytes



We have an 8 byte block size, direct-mapped, 16 kB 
cache.  How can we find the index from an address?

A. Divide by 8

B. Divide by (16*1024)

C. Mod by 16*1024

D. Divide by 8, then mod by (2*1024)

E. None of the above



We have an 8 byte block size, 2-way set associative, 
16 KB cache.  How can we find the index from an 

address?

A. Divide by 8, then mod by 1024

B. Divide by 8, then mod by (2*1024)

C. Divide by 8, then mod by (2*2*1024)

D. Divide by 16, then mod by (2*1024)

E. None of the above



We have an 8 byte block size, direct mapped, 16 KB 
cache.  How can we find the tag of an address?

A. Divide by 8

B. Divide by 8 * 1024

C. Divide by 16*1024

D. None of the above



Previous Conceptions of How Computers Work

2 + 4

6



Actually Assembly

High Level:

x = 2 + 4

28

Assembly (assuming we have a mem address for x in $s0):

li   $t1,  2

addi   $t1, $t1, 4

sw    $t1, 0($s0)



Actually Machine Instructions

addi $t1, $t1 5

00100001001010010000000000000101 

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits



Actually The Datapath



Actually Registers
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Actually Flip-flops
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Actually Latches



Actually the ALU



Actually the ALU



Actually Memory

CPU

memory

memory

memory

memory

on-chip cache(s)

off-chip cache

main memory

disk

small expensive $/bit

cheap $/bit

big

fast

slow



Actually Caches



Actually LOTS of Caches



But wait, what about?

• Negative Numbers

• Floating Point

• All that other stuff . . .

39



Computers 
are 

Complicated



• But now, you know how they work.  Kinda.



• I appreciate all the work you’ve done for this class.

• Have a great summer!

• …and fill out course evals!



Questions?



Reading
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