
CSCI 210: Computer Architecture

Lecture 36: Caches V

Stephen Checkoway

Slides from Cynthia Taylor

Oberlin College

1

CS History: IBM System/360 Model 85

• First computer to have cached
memory

• Shipped in December of 1969

• Had either 16 KB or 32 KB
cache

– Modern systems have around 64
MB

• IBM only built about 30 of
them

Unidentified US government agent, Public
domain, via Wikimedia Commons

CACHE SIMULATOR PROJECT

Cache Simulator

• Take in a datatrace of load/stores from a real program

• Simulate running the program on a given cache

• Calculate how well a given cache would perform for that trace

Cache Parameters

• Always: Write-allocate, write-back, LRU replacement

• Change:

– Cache size

– Block size

– Associativity

– Miss penalty

Address Trace

Load/Store Address InstructionCount

0 7fffed80 1

0 10010000 10

0 10010060 3

1 10010030 4

0 10010004 6

0 10010064 3

1 10010034 4

L/S: 0 for load, 1 for store

Simulation Results

Simulation results:

execution time 52268708 cycles

instructions 5136716

memory accesses 1957764

overall miss rate 0.79

load miss rate 0.88

CPI 10.18

average memory access time 24.07 cycles

dirty evictions 225876

load_misses 1525974

store_misses 30034

load_hits 205909

store_hits 195847

What do you need to do?

• Create data structures that emulate a cache

• For each load/store instruction, find where the data would go in
the cache, check if it’s already there

• Update cache metadata when cache blocks get evicted

• Calculate number of miss penalty cycles, load misses, store misses,
instructions, etc.

Implementation hints

• Create a data structure that contains all of the metadata you
need to keep for one cache entry (valid bit, dirty bit, tag) to
keep this data in one place; don’t keep a vector of valid bits, a
vector of dirty bits, and a vector of tags for example

• Create a data structure that keeps track of a set of cache
entries and the LRU metadata for the set

• Keep track of counts of events (instructions, misses, hits, dirty
evictions, etc.) not statistics; e.g., don’t have a CPI field

• Compute the statistics from the counts

Questions on Cache Final Project?

We have an 8 byte block size, direct-
mapped, 16 kB cache. For a given byte

address, to find the offset

A. Mod by 8

B. Mod by 16

C. Divide by 8

D. Divide by 16

E. None of the above

If we are simulating a cache and not actually
accessing data, do we need to use the offset for

anything?
A. Yes

B. No

We have an 8 byte block size, direct-mapped, 16 kB
cache. How many rows will this cache have?

A. 16

B. 2*1024

C. 8*1024

D. 16*1024

*Recall a kB is 1024 bytes

We have an 8 byte block size, direct-mapped, 16 kB
cache. How can we find the index from an address?

A. Divide by 8

B. Divide by (16*1024)

C. Mod by 16*1024

D. Divide by 8, then mod by (2*1024)

E. None of the above

We have an 8 byte block size, 2-way set associative,
16 KB cache. How can we find the index from an

address?

A. Divide by 8, then mod by 1024

B. Divide by 8, then mod by (2*1024)

C. Divide by 8, then mod by (2*2*1024)

D. Divide by 16, then mod by (2*1024)

E. None of the above

We have an 8 byte block size, direct mapped, 16 KB
cache. How can we find the tag of an address?

A. Divide by 8

B. Divide by 8 * 1024

C. Divide by 16*1024

D. None of the above

Previous Conceptions of How Computers Work

2 + 4

6

Actually Assembly

High Level:

x = 2 + 4

28

Assembly (assuming we have a mem address for x in $s0):

li $t1, 2

addi $t1, $t1, 4

sw $t1, 0($s0)

Actually Machine Instructions

addi $t1, $t1 5

00100001001010010000000000000101

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Actually The Datapath

Actually Registers

31

Actually Flip-flops

32

Actually Latches

Actually the ALU

Actually the ALU

Actually Memory

CPU

memory

memory

memory

memory

on-chip cache(s)

off-chip cache

main memory

disk

small expensive $/bit

cheap $/bit

big

fast

slow

Actually Caches

Actually LOTS of Caches

But wait, what about?

• Negative Numbers

• Floating Point

• All that other stuff . . .

39

Computers
are

Complicated

• But now, you know how they work. Kinda.

• I appreciate all the work you’ve done for this class.

• Have a great summer!

• …and fill out course evals!

Questions?

Reading

45

	Slide 1: CSCI 210: Computer Architecture Lecture 36: Caches V
	Slide 3: CS History: IBM System/360 Model 85
	Slide 13: Cache simulator project
	Slide 14: Cache Simulator
	Slide 15: Cache Parameters
	Slide 16: Address Trace
	Slide 17: Simulation Results
	Slide 18: What do you need to do?
	Slide 19: Implementation hints
	Slide 20: Questions on Cache Final Project?
	Slide 21: We have an 8 byte block size, direct-mapped, 16 kB cache. For a given byte address, to find the offset
	Slide 22: If we are simulating a cache and not actually accessing data, do we need to use the offset for anything?
	Slide 23: We have an 8 byte block size, direct-mapped, 16 kB cache. How many rows will this cache have?
	Slide 24: We have an 8 byte block size, direct-mapped, 16 kB cache. How can we find the index from an address?
	Slide 25: We have an 8 byte block size, 2-way set associative, 16 KB cache. How can we find the index from an address?
	Slide 26: We have an 8 byte block size, direct mapped, 16 KB cache. How can we find the tag of an address?
	Slide 27: Previous Conceptions of How Computers Work
	Slide 28: Actually Assembly
	Slide 29: Actually Machine Instructions
	Slide 30: Actually The Datapath
	Slide 31: Actually Registers
	Slide 32: Actually Flip-flops
	Slide 33: Actually Latches
	Slide 34: Actually the ALU
	Slide 35: Actually the ALU
	Slide 36: Actually Memory
	Slide 37: Actually Caches
	Slide 38: Actually LOTS of Caches
	Slide 39: But wait, what about?
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Questions?
	Slide 45: Reading

